

Safe, Scalable, Inexpensive, and Mild Nickel-Catalyzed Migita-like C–S Cross-Couplings in Recyclable Water

Yilin Cao^{1,2}, Julie Yu², Haobo Pang², Bruce H. Lipshutz² ¹College of Creative Studies, University of California, Santa Barbara ²Department of Chemistry and Biochemistry, University of California, Santa Barbara

Optimization

under Ar

Introduction

Thioethers are widely distributed throughout nature, including being found in numerous physiologically active compounds (Figure 1). Unfortunately, Migita cross-couplings that lead to carbon-sulfur (C–S) bond formation remain challenging in several ways, including the typically high loadings of endangered Pd^[1] catalysts attributed to strong coordination of thiolates to the metal, oftentimes leading to catalyst deactivation and hence, overall low efficiency.

Figure 1. Selected examples of therapeutic agents bearing aromatic/ heteroaromatic thioethers.

Challenge

• Use precious and expensive metals, such as Pd^[2], Ir^[3], and Ru^[4].

(1.05 equiv)

Entry	Ni(Phen) 2Br2	Zn	K ₃ PO ₄	Conv.
5	(mol%)	(equiv)	(equiv)	[%] ^[b]
1	2 mol%	2	2	100
2	0.35 mol%	2	2	77
3	0.07 mol%	2	2	79
4	0.0035 mol%	2	2	53
5	2 mol%	2	1.2	100
6	2 mol%	2	0	0
7	2 mol%	2	2	6[c]
8	0.7 mol%	1	1.2	100
9	0.7 mol%	0.5	1.2	99
10	0.7 mol%	0.25	1.2	94 (96)
11	0.7 mol%	0.1	1.2	83
12	0.7 mol%	0.5	1.2	100
13	0.7 mol%	0.5	1.2	62 ^[d]

[a] Scale of reaction: 0.25 mmol of 4-iodoanisole and 2 wt % TPGS-750-M/H2O (0.5 mL). [b] Conversion determined by 1H NMR. Isolated yields in parenthesis. [c] Run at rt ($22 \circ C$). [d] Run in air; disulfide formed.

• Reducing pre-catalyst to 0.35 % or below decrease the yield (entries 2-4).

Synthesis a Drug Precursor

- Synthesis of a Vortioxetine Intermediate.
- Applicable to syntheses of targets in pharmaceutical area.
- Residual Metal Analysis: much **lower** residual nickel loading (1.0 ppm) compared to FDA guidelines (≤25 ppm).

• Most reactions reply on high temperatures in organic solvents^[5].

Goal

• Find an alternative protocol that replaces dangerously flammable and toxic organic solvents with safe, recyclable water.

This Protocol

- Describe a process that relies on low levels of base metal (nickel) catalysis enabled by aqueous micellar catalysis.
- Decrease the base to 1.2 equivalent did not affect the conversion (entry 5).
- The base was essential (entry 6).
- Decrease the temperature from 45 °C to 22 °C gave a significant reduction in yield (entry 7).
- Only 0.25 equivalents were required (entries 8–11).
- Reaction efficiency was reduced when air remained within the reaction vessel (entry 13).

- E factor was only **4.6** (indicating a sustainable process is in hand for thioether bond formation..
- 2 wt % TPGS-750-M, could be **re-used in three** additional reactions to future minimizing generation of wastewater.

References

T. Scattolin, E. Senol, G. Yin, Q. Guo, F. Schoenebeck, Angew. Chem. Int. Ed. 2018, 57, 12425–12429; Angew. Chem. 2018, 130, 12605–12609.
a) T. Norris, K. Leeman, Org. Process Res. Dev. 2008, 12, 869–876; b) J. M. Ganley, C. S. Yeung, J. Org. Chem. 2017, 82, 13557–13562.

[3] M. S. Oderinde, M. Frenette, D. W. Robbins, B. Aquila, J. W. Johannes, J. Am. Chem. Soc. 2016, 138, 1760–1763.

[4] S. D. Timpa, C. J. Pell, O. V. Ozerov, J. Am. Chem. Soc. 2014, 136, 14772–14779.

[5] "N,N-dimethylformamide - Substance Information - ECHA," A. C. Jones, W. I. Nicholson, H. R. Smallman, D. L. Browne, Org. Lett. 2020, 22, 7433–7438.

[6] Z. Boros, L. Nagy-Győr, K. Kátai-Fadgyas, I. Kőhegyi, I. Ling, T. Nagy, Z. Iványi, M. Oláh, G. Ruzsics, O. Temesi, B. Volk, J. Flow. Chem. 2019, 9, 101–113.

DOI: 10.1002/anie.202013017