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Using the methods outlined above, I created a 
command-line tool that can generate a specified 
number of problems in a range of target 
difficulties, addressing each of the challenges. 
Regularity is enforced by the MOSEL syntax, and 
duplicates are removed at multiple stages to 
ensure differences between each problem. 
Reasonability and difficulty scores are calculated 
for each problem, which is rejected if it falls 
outside a limited range. During testing, the tool 
generated hundreds of problems per minute, many 
times faster than a human.

The quality of generated problems appears to 
be on-par with handwritten ones, but further 
studies should be done to verify this claim.

Results
The process of generating MOSEL formulae 

using fuzzing techniques appears to yield results 
comparable in quality to problems written by 
humans and requires minimal effort from 
instructors. It may be possible to generalize this 
process to other types of construction problems, 
like NFA’s, PDA’s or Turing machines. In 
subsequent research, I would like to employ these 
methods in CMPSC 138, and conduct user studies 
to refine and verify the generation process.

Conclusion
In most iterations of this course, the instructor 

must either use problems found in a limited set of 
textbooks or spend time to create their own. 
Using textbook problems for assignments or 
exams is not ideal, since answer keys are easily 
available online. This dilemma can be overcome 
by automatically generating the problems. 
Potential upsides of programmatic generation 
include:
• Efficiency, the professor being able to create many 

problems in a short amount of time, 
• Uniqueness, preventing students from sharing 

answers or using a published key,
• Customizability, as individual students can receive 

problems more directly tailored to their needs.

For this project, I chose to focus on a certain type 
of problem, DFA construction problems, which 
give a textual description of a language and ask 
students to create a DFA (deterministic finite-
state automaton) that accepts it. The goal is to 
create a tool that can automatically generate DFA 
construction problems that instructors can give to 
students. The instructor will use this tool by 
specifying the number of problems to generate 
and a level of difficulty, and the tool would return 
a list of problems from which they can select their 
favorites.

Why is this important?

At UCSB, computer science undergraduates are 
required to take CMPSC 138, which explores various 
classes of decision problems. Decision problems are 
essentially questions that can be answered either ‘yes’ or 
‘no’, such as “is the number n prime?” or “does the 
string s contain the substring ‘ab’ at least twice?”. 
Students are asked to represent these decision problems 
using mathematical models, or automata, which can be 
thought of as a simple program. 

Background
The aim is to create a method for automatically generating construction problems for DFA’s, a subset 
of regular automata, to be used for homework and exam problems in classrooms. The system for 
problem generation should be robust, producing many reasonable and unique problems, and 
configurable with respect to verbosity and difficulty level of the problems. A successful tool would 
have to consistently generate output that meet these five criteria: 

Challenges

• Regularity: Any generated problems must be guaranteed to be regular languages. Otherwise, a DFA that recognizes the 
language cannot exist, so there wouldn’t be a valid solution.    

• Variability: The problems must be both unique and highly variable so the instructor would have a large set of options to 
choose from. Problems with small differences are not useful since they commonly share similar solutions. 

• Difficulty: The metric of ‘difficulty’ is how challenging the problem would be for a student to solve, irrespective of 
syntax. Hence, the difficulty score is mostly drawn from the features of the DFA itself. 

• Reasonability: The metric of ‘reasonability’ is loosely defined as how much the instructor would like to use the problem. 
I believe that this score would be higher when the textual description is concise and easily comprehensible, and when the 
difficulty of the problem falls closer to the desired value.  

• Natural Language Description: There needs to be a suitable English description to the problem, one that is both 
unambiguous and easy for students to comprehend. 
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Fig. 1: An automaton for the language “strings that contain ‘aa’ and end with ‘b’”.

>./dfagen -n 2 -d beginner -v -a
1: the string has an odd length
(length mod 2 = 1)
alphabet: {0, 1}
start: 0
accepting: {1}
1 (0 -> 0) (1 -> 0)
0 (0 -> 1) (1 -> 1)

2: every '1' is immediately preceded by a '0'
('0' precedes '1')
alphabet: {0, 1}
start: 0
accepting: {1, 0}
0 (1 -> 2) (0 -> 1)
1 (1 -> 0) (0 -> 1)
2 (1 -> 2) (0 -> 2)

Fig. 5: Sample output from the command-line tool. Here, the user 
requests 2 problems at a beginner difficulty level.

While regular languages can be represented using DFA’s, this does not nicely translate to a concise problem description. Instead, I used MOSEL, a syntax for monadic 
second-order logic, which is a much more faithful representation of the problem’s structure. Crucially, any valid MOSEL formula is guaranteed to be regular. A MOSEL 
syntax can be programmatically generated using known techniques, which would then be converted into a DFA using a pre-existing tool. The structure of the MOSEL 
syntax also lends itself well to creating a natural language description, which can be done inductively.

Methodology

1) First, a MOSEL abstract syntax tree is generated 
using fuzzing techniques. Each node is randomly selected 
from a weighted list of options, obeying contextual 
constraints. The generated AST is refined by adding 
generated constants, removing duplicates, and simplifying 
redundant syntaxes. Each formula is procedurally 
converted into its textual representation.

2) Next, the MOSEL syntax is converted into pure 
monadic second-order logic, to serve as input for the 
MONA tool. Lower-level formulae are not changed, but 
higher-level types, like ‘contains aba’ or ‘size mod 3 = 1’ 
are recursively translated into their MSO representations. 
The tree is converted into a MONA program and run, 
outputting a DFA.

3) The resulting DFA is analyzed and scores are assigned 
for “difficulty” and “reasonability”, based on the 
complexity of the syntax and the resultant DFA, 
respectively. The problem is kept if it falls within the 
desired difficulty threshold. The set of remaining problems 
are presented to the user in order of their reasonability, 
giving their description and DFA solution.

The number of occurrences of the 

substring “0” is even and it is not 

true that the string begins with “10”.
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Fig. 3: MOSEL syntax tree for fig. 2, color coded by node type.Fig. 2: Description of an example DFA construction problem. Fig. 4: DFA for the problem in fig. 2, converted with MONA.

Equivalent DFA

Syntactic Complexity: 1.4
Difficulty: 8


