
Automating Problem Creation
Benjamin Darnell

Faculty Advisor: Dr. Ben Hardekopf
Department of Computer Science, University of California, Santa Barbara

My CCS Summer Research Project was possible due to
the generosity of donors to The College of Creative
Studies Computer Science Endowment.

I would also like to thank my research advisor, Ben
Hardekopf, for his guidance and support.

Acknowledgements

Using the methods outlined above, I created a
command-line tool that can generate a specified
number of problems in a range of target
difficulties, addressing each of the challenges.
Regularity is enforced by the MOSEL syntax, and
duplicates are removed at multiple stages to
ensure differences between each problem.
Reasonability and difficulty scores are calculated
for each problem, which is rejected if it falls
outside a limited range. During testing, the tool
generated hundreds of problems per minute, many
times faster than a human.

The quality of generated problems appears to
be on-par with handwritten ones, but further
studies should be done to verify this claim.

Results
The process of generating MOSEL formulae

using fuzzing techniques appears to yield results
comparable in quality to problems written by
humans and requires minimal effort from
instructors. It may be possible to generalize this
process to other types of construction problems,
like NFA’s, PDA’s or Turing machines. In
subsequent research, I would like to employ these
methods in CMPSC 138, and conduct user studies
to refine and verify the generation process.

Conclusion
In most iterations of this course, the instructor

must either use problems found in a limited set of
textbooks or spend time to create their own.
Using textbook problems for assignments or
exams is not ideal, since answer keys are easily
available online. This dilemma can be overcome
by automatically generating the problems.
Potential upsides of programmatic generation
include:
• Efficiency, the professor being able to create many

problems in a short amount of time,
• Uniqueness, preventing students from sharing

answers or using a published key,
• Customizability, as individual students can receive

problems more directly tailored to their needs.

For this project, I chose to focus on a certain type
of problem, DFA construction problems, which
give a textual description of a language and ask
students to create a DFA (deterministic finite-
state automaton) that accepts it. The goal is to
create a tool that can automatically generate DFA
construction problems that instructors can give to
students. The instructor will use this tool by
specifying the number of problems to generate
and a level of difficulty, and the tool would return
a list of problems from which they can select their
favorites.

Why is this important?

At UCSB, computer science undergraduates are
required to take CMPSC 138, which explores various
classes of decision problems. Decision problems are
essentially questions that can be answered either ‘yes’ or
‘no’, such as “is the number n prime?” or “does the
string s contain the substring ‘ab’ at least twice?”.
Students are asked to represent these decision problems
using mathematical models, or automata, which can be
thought of as a simple program.

Background
The aim is to create a method for automatically generating construction problems for DFA’s, a subset
of regular automata, to be used for homework and exam problems in classrooms. The system for
problem generation should be robust, producing many reasonable and unique problems, and
configurable with respect to verbosity and difficulty level of the problems. A successful tool would
have to consistently generate output that meet these five criteria:

Challenges

• Regularity: Any generated problems must be guaranteed to be regular languages. Otherwise, a DFA that recognizes the
language cannot exist, so there wouldn’t be a valid solution.

• Variability: The problems must be both unique and highly variable so the instructor would have a large set of options to
choose from. Problems with small differences are not useful since they commonly share similar solutions.

• Difficulty: The metric of ‘difficulty’ is how challenging the problem would be for a student to solve, irrespective of
syntax. Hence, the difficulty score is mostly drawn from the features of the DFA itself.

• Reasonability: The metric of ‘reasonability’ is loosely defined as how much the instructor would like to use the problem.
I believe that this score would be higher when the textual description is concise and easily comprehensible, and when the
difficulty of the problem falls closer to the desired value.

• Natural Language Description: There needs to be a suitable English description to the problem, one that is both
unambiguous and easy for students to comprehend.

• Alur, R., D’Antoni, L., Gulwani, S., Kini, D. and Viswanathan,
M., Automated Grading of DFA Constructions.

• Shenoy, V., Aparanji, U., K., S. and Kumar, V., 2016.
Generating DFA Construction Problems
Automatically. International Conference on Learning and
Teaching in Computing and Engineering,.

Literature Cited

q1 q2 q3 q4

a

b

a

b

a

b ba

1

Fig. 1: An automaton for the language “strings that contain ‘aa’ and end with ‘b’”.

>./dfagen -n 2 -d beginner -v -a
1: the string has an odd length
(length mod 2 = 1)
alphabet: {0, 1}
start: 0
accepting: {1}
1 (0 -> 0) (1 -> 0)
0 (0 -> 1) (1 -> 1)

2: every '1' is immediately preceded by a '0'
('0' precedes '1')
alphabet: {0, 1}
start: 0
accepting: {1, 0}
0 (1 -> 2) (0 -> 1)
1 (1 -> 0) (0 -> 1)
2 (1 -> 2) (0 -> 2)

Fig. 5: Sample output from the command-line tool. Here, the user
requests 2 problems at a beginner difficulty level.

While regular languages can be represented using DFA’s, this does not nicely translate to a concise problem description. Instead, I used MOSEL, a syntax for monadic
second-order logic, which is a much more faithful representation of the problem’s structure. Crucially, any valid MOSEL formula is guaranteed to be regular. A MOSEL
syntax can be programmatically generated using known techniques, which would then be converted into a DFA using a pre-existing tool. The structure of the MOSEL
syntax also lends itself well to creating a natural language description, which can be done inductively.

Methodology

1) First, a MOSEL abstract syntax tree is generated
using fuzzing techniques. Each node is randomly selected
from a weighted list of options, obeying contextual
constraints. The generated AST is refined by adding
generated constants, removing duplicates, and simplifying
redundant syntaxes. Each formula is procedurally
converted into its textual representation.

2) Next, the MOSEL syntax is converted into pure
monadic second-order logic, to serve as input for the
MONA tool. Lower-level formulae are not changed, but
higher-level types, like ‘contains aba’ or ‘size mod 3 = 1’
are recursively translated into their MSO representations.
The tree is converted into a MONA program and run,
outputting a DFA.

3) The resulting DFA is analyzed and scores are assigned
for “difficulty” and “reasonability”, based on the
complexity of the syntax and the resultant DFA,
respectively. The problem is kept if it falls within the
desired difficulty threshold. The set of remaining problems
are presented to the user in order of their reasonability,
giving their description and DFA solution.

The number of occurrences of the

substring “0” is even and it is not

true that the string begins with “10”.

Natural Language Description MOSEL Syntax Tree

and

begins
with

“10”

size modulo equals

2 0

not

“0”

indices of

Fig. 3: MOSEL syntax tree for fig. 2, color coded by node type.Fig. 2: Description of an example DFA construction problem. Fig. 4: DFA for the problem in fig. 2, converted with MONA.

Equivalent DFA

Syntactic Complexity: 1.4
Difficulty: 8

