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Does there exist invariant symplectic and contact forms on almost Abelian Lie groups?

What is. . .
. . . a Lie group?

It is a space where the points can be multiplied with each other, satisfying
nice multiplication rules, and where the product depends smoothly on the
inputs.

Examples

The circle, U(1) ∼= SO(2) The 3-sphere, SU(2)

. . . a Lie algebra?

It is a vector space with one extra operation“[, ]”, called the bracket, satisfying
(i) bilinearity, (ii) antisymmetry and (iii) [[x,y], z]+[[y, z],x]+[[z,x],y] = 0.

Examples

Think of the cross product in R3. That is, set [x,y] := x×y, where x and y
are 3-d vectors!

. . . the Lie algebra of a Lie group?

It is the tangent space at the identity!
(. . . it is also the collection of left-invariant vector fields.)

Identity
e · g = g · e = g, ∀g ∈ G.

This e is unique.

Left translation
Lg : h 7→ gh, for any h ∈ G.

This is a diffeomorphism (i.e. symme-
try) of the Lie group

. . . a differential k-form?

It is a “machine” taking in k vector fields, outputting 1 function, which is
antisymmetric with respect to the arguments.

ω(. . . ,v, . . . ,w, . . . ) = −ω(. . . ,w, . . . ,v, . . . )

Example (local): determinant / oriented volume.

Exterior derivative: grad⇒ curl⇒ div, symbol: “d”.
Closed: dω = 0. Non-degenerate: ω(v, w) = 0,∀w =⇒ v = 0.

Symplectic form: a non-degenerate, closed 2-form ω ∈ Ω2(M).
Contact form: a 1-form θ for which θ ∧ (dθ)n 6= 0 everywhere on M .

. . . left invariant?

ω|g(d(Lg)e(v1), . . . , d(Lg)e(vk)) = ω|e(v1, . . . , vk), ∀g ∈ G.
⇒ ω(left-inv. X1, . . . , Xk) = const.

How about. . . . . . almost Abelian?
An almost Abelian Lie algebra is a non-Abelian Lie Algebra g that has a
co-dimension 1 Abelian ideal h, i.e. dim h = dim g− 1.

An almost Abelian Lie group is a Lie group whose Lie algebra is almost
Abelian.

Abelian: A Lie algebra is abelian when [·, ·] ≡ 0.
Ideal: subspace h ⊂ g so that [h, g] ⊂ h.

Examples 1 a b
0 1 c
0 0 1

  0 a b
0 0 c
0 0 0


The Heisenberg Group The Heisenberg Algebra

Explaining the title
Let g be an almost Abelian Lie algebra, h ⊂ g the abelian ideal.

=⇒ g = Span {e0} ⊕ h,

where [e0, X ] ∈ h for X ∈ h.

Consequence

almost abelian Lie algebra
m

vector space h with specified operator ade0 : X 7→ [e0, X ]

Known Proposition
Operators T ′, T : h→ h give isomorphic almost abelian Lie algebra iff

λT ′ = φTφ−1 for some λ 6= 0 and invertible φ.

Consequence: g↔ (h = Rd with T = Jordan form).

Results
Proposition 1
In dimension d = even, a left-invariant symplectic form exists on an almost
Abelian Lie group with Lie algebra (g, ade0) if and only if the (d−1)×(d−1)
matrix equation

ZJ + J>Z = 0

has a solution Z which is anti-symmetric and of rank d − 2. Here J is the
Jordan form of the operator ade0.

Proposition 2
On an odd dimensional almost Abelian Lie group, therecannot exist a left-
invariant contact form unless the dimension is 3.

Methods
Global Invariant Frame

Magic Formula

dω(X1, . . . , Xk+1) =
k+1∑
i=1

(−1)i−1Xi

(
ω(X1, . . . , X̂i, . . . , Xk+1)

)
+

∑
1≤i<j≤k+1

(−1)i+jω
(

[Xi, Xj], . . . , X̂i, . . . , X̂j, . . .
)
,

Definition of Wedge Product

ω ∧ η(V1, . . . , Vk+l)

:=
1

k!l!

∑
σ∈Sk+l

(sgn σ)ω(Vσ(1), . . . , Vσ(k))η
(
Vσ(k+1), . . . , Vσ(k+l)

)
,
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Symplectic forms only live in even dimensions, while contact
forms, odd dimensions.

Important Fact


