One Step Beyond Linear Algebra

Jiasheng Lin Faculty Advisor: Prof. Zhirayr Avetisyan

Department of Mathematics, University of California, Santa Barbara

Does there exist invariant symplectic and contact forms on *almost Abelian* Lie groups?

What is...

...a Lie group?

It is a space where the points can be multiplied with each other, satisfying nice multiplication rules, and where the product depends smoothly on the inputs.

EXAMPLES

Explaining the title

Let \mathfrak{g} be an almost Abelian Lie algebra, $\mathfrak{h} \subset \mathfrak{g}$ the abelian ideal.

$$\Longrightarrow \mathfrak{g} = \operatorname{Span} \{e_0\} \oplus \mathfrak{h},$$

where $[e_0, X] \in \mathfrak{h}$ for $X \in \mathfrak{h}$.

Consequence

almost abelian Lie algebra vector space \mathfrak{h} with specified operator $\operatorname{ad}_{e_0} : X \mapsto [e_0, X]$

Known Proposition

Operators $T', T : \mathfrak{h} \to \mathfrak{h}$ give isomorphic almost abelian Lie algebra iff

The 3-sphere, SU(2)

...a Lie algebra?

It is a vector space with one extra operation "[,]", called the bracket, satisfying (i) bilinearity, (ii) antisymmetry and (iii) $[[\mathbf{x}, \mathbf{y}], \mathbf{z}] + [[\mathbf{y}, \mathbf{z}], \mathbf{x}] + [[\mathbf{z}, \mathbf{x}], \mathbf{y}] = 0.$

EXAMPLES

Think of the cross product in \mathbb{R}^3 . That is, set $[\mathbf{x}, \mathbf{y}] := \mathbf{x} \times \mathbf{y}$, where \mathbf{x} and \mathbf{y} are 3-d vectors!

... the Lie algebra of a Lie group?

It is the tangent space at the identity!

(... it is also the collection of left-invariant vector fields.)

Identity

 $e \cdot g = g \cdot e = g, \forall g \in G.$

This e is unique.

Left translation

 $L_q: h \mapsto gh$, for any $h \in G$.

This is a diffeomorphism (i.e. symmetry) of the Lie group

...a differential *k*-form?

It is a "machine" taking in k vector fields, outputting 1 function, which is antisymmetric with respect to the arguments.

$$\omega(\ldots,\mathbf{v},\ldots,\mathbf{w},\ldots) = -\omega(\ldots,\mathbf{w},\ldots,\mathbf{v},\ldots)$$

 $\lambda T' = \phi T \phi^{-1}$ for some $\lambda \neq 0$ and invertible ϕ .

Consequence: $\mathfrak{g} \leftrightarrow (\mathfrak{h} = \mathbb{R}^d \text{ with } T = \text{Jordan form}).$

Symplectic forms only live in even dimensions, while contact forms, odd dimensions.

Important Fact

Results

Methods

Proposition 1

In dimension d = even, a left-invariant symplectic form exists on an almost Abelian Lie group with Lie algebra $(\mathfrak{g}, \operatorname{ad}_{e_0})$ if and only if the $(d-1) \times (d-1)$ matrix equation

 $ZJ + J^{\top}Z = 0$

has a solution Z which is anti-symmetric and of rank d-2. Here J is the Jordan form of the operator ad_{e_0} .

Proposition 2

On an odd dimensional almost Abelian Lie group, therecannot exist a leftinvariant contact form unless the dimension is 3.

Global Invariant Frame

EXAMPLE (local): determinant / oriented volume. **Exterior derivative**: grad \Rightarrow curl \Rightarrow div, symbol: "d". **Non-degenerate**: $\omega(v, w) = 0, \forall w \Longrightarrow v = 0.$ **Closed**: $d\omega = 0$. **Symplectic form**: a non-degenerate, closed 2-form $\omega \in \Omega^2(M)$. **Contact form**: a 1-form θ for which $\theta \wedge (d\theta)^n \neq 0$ everywhere on M. ... left invariant?

 $\omega|_q(\mathrm{d}(L_q)_e(v_1),\ldots,\mathrm{d}(L_g)_e(v_k)) = \omega|_e(v_1,\ldots,v_k), \quad \forall g \in G.$ $\Rightarrow \omega(\text{left-inv. } X_1, \ldots, X_k) = \text{const.}$

How about...

... almost Abelian?

An almost Abelian Lie algebra is a non-Abelian Lie Algebra g that has a co-dimension 1 Abelian ideal \mathfrak{h} , i.e. dim $\mathfrak{h} = \dim \mathfrak{g} - 1$.

An almost Abelian Lie group is a Lie group whose Lie algebra is almost Abelian.

EXAMPLES

Abelian: A Lie algebra is abelian when $[\cdot, \cdot] \equiv 0$. **Ideal**: subspace $\mathfrak{h} \subset \mathfrak{g}$ so that $[\mathfrak{h}, \mathfrak{g}] \subset \mathfrak{h}$.

0 0 c

The Heisenberg Group

The Heisenberg Algebra

Magic Formula

$$d\omega(X_1, \dots, X_{k+1}) = \sum_{i=1}^{k+1} (-1)^{i-1} X_i \left(\omega(X_1, \dots, \widehat{X_i}, \dots, X_{k+1}) \right) + \sum_{1 \le i < j \le k+1} (-1)^{i+j} \omega \left([X_i, X_j], \dots, \widehat{X_i}, \dots, \widehat{X_j}, \dots \right),$$

Definition of Wedge Product

$$= \frac{\omega \wedge \eta(V_1, \dots, V_{k+l})}{k! l!} \sum_{\sigma \in S_{k+l}} (\operatorname{sgn} \sigma) \omega(V_{\sigma(1)}, \dots, V_{\sigma(k)}) \eta \left(V_{\sigma(k+1)}, \dots, V_{\sigma(k+l)} \right),$$

Acknowledgements

- 1. Thanks to Professor Zhirayr Avetisyan for his constant and wholehearted support, and Professor Maribel Bueno for allowing me into this wonderful program.
- 2. My CCS Summer Research Project was possible due to the generosity of donors to the Science/Mathematics Summer Undergraduate Research Fund at the College of Creative Studies.

