
COMPUTING ON ENCRYPTED DATA WITH HOMOMORPHIC ENCRYPTION

Vir Pathak
University of California, Santa Barbara

COMPUTING ON ENCRYPTED DATA WITH HOMOMORPHIC ENCRYPTION

Vir Pathak
University of California, Santa Barbara

Introduction

Fully Homomorphic encryption has long been considered the "holy grail" of
cryptography because of its far reaching applications. In a nutshell, homomor-
phic encryption allows us to add and multiply values while these values are
encrypted. The encryption function almost serves as a "homomorphism" be-
tween the plaintext and ciphertext spaces, if one is willing to think algebraically.
An efficient homomorphic encryption scheme would have important applications
in privacy-preserving machine learning, since such an algorithm would allow us
to run machine learning functions on encrypted data.

Using ideal lattices from algebraic number theory, Craig Gentry was the first
to create an encryption scheme which was fully homomorphic. However, his
scheme was computationally impractical. In our research, we continued the
work on making this technology more applicable to real world scenarios.

Fully Homomorphic Encryption with CKKS

One of the most promising homomorphic encryption algorithms is the CKKS
scheme. This algorithm is especially useful because it has a special rescaling
procedure which allows us homomorphically perform operations on real(or
complex) valued data. Most other schemes are only integer-compatible. We
give a rough procedure describing how to encrypt data and with CKKS.

Encoding: Say we have n/2 data vectors whose values are entries in C.
We encode this data into a plaintext polynomial by exploiting a ring isomorphism
σ : C

n
2 → R where R is the ring of plaintext polynomials. To be precise, σ is the

canonical embedding between C
n
2 and R = Z[x]/(φM (x)) where M = n/2 and

φM is the M th cyclotomic polynomial. (Note that C
n
2 is isomorphic to its image

in R under σ, not R itself.)

Encryption: Encryption takes a plaintext polynomial in R and computes a
ciphertext polynomial in R2

q for some parameter q. Encryption is done with a
public key parameter pk, which is essentially a sample from the Ring Learning
with Errors (RLWE) Distribution. The security of CKKS relies on the (Decision)
Ring Learning With Errors Problem.

Decryption: To decrypt a ciphertext c = (c0, c1) ∈ R2
q, compute 〈sk, c〉

(mod q).

Noise Reduction and Rescaling

CKKS has Add and Mult functions which let us homomorphically add and
multiply data vectors using an evaluation key evk. Repeated homomorphic
multiplication results in significant noise growth. If the noise exceeds a certain
threshold, we will be unable to decrypt properly. For this reason, we create a
ladder of gradually decreasing moduli and "switch moduli" in order to compute
our ciphertexts modulo a smaller integer compared to before. Roughly, this
procedure reduces our noise.

Another problem which arises is that the size of our messages embedded
in our ciphertexts grows exponentially with repeated multiplication. For this
reason, we need to introduce a rescaling procedure which will let us reset the
size of the messages embedded within ciphertexts. Rescaling is essentially
homomorphic division. Our work centers on how to implement rescaling and
modulus switching in the most efficient manner.

Our Work

To implement Rescale and Modswitching in the most efficient way, we viewed our homo-
morphic operations as a graph, as in Roshan Dathathri’s EVA paper. Each homomorphic
operation (add, mult, rescale, modswitch) now becomes a node in our graph. The
placement of the add and mult nodes are already determined by the function f which
we want to homomorphically compute (in practice think of f as some polynomial). The
challenge then reduces to inserting the least amount of Rescale and Modswitch nodes.
The solution to this optimization problem is the Waterline Rescale method described by
Dathathri. To make this more concrete, consider the example given in the paper where
they compute the function x2y3 homomorphically. The first set of graphs on the top is
evaluating f with no rescaling or modswitching and naively evaluating f by rescaling after
every single multiplication. We have:

, .

Now look at the graph when we choose to insert our nodes according to Waterline
Rescaling.

,

Clearly, Waterline Rescaling greatly reduces the amount of times we need to modswitch
or Rescale.

Further Work

To do machine learning on encrypted data, we must understand some other
functionalities in CKKS. One such functionality is creating plaintext slots, so
one ciphertext encrypts multiple plaintext polynomials. This is called batching,
which relies on the concept of reciprocity in the polynomial ring R. Once we
can batch, we might want permute the batched plaintexts which are encrypted
within the corresponding ciphertext. There are techniques available to do this,
which rely on some more algebraic number theory along with some Galois The-
ory. I want to keep reading the papers describing these techniques, because I
think the mathematics behind them is very interesting.

Conclusion

In our work, we investigated some ways in making fully homomorphic encryp-
tion increasingly practical, and especially focusing on its applications in privacy-
preserving machine learning. In particular, we used the techniques in Roshan
Dathathri’s EVA paper to optimize homomorphic computations in CKKS.

Acknowledgements

I would like to thank the Kelly family for their generosity. I would also like to
thank my advisor Cetin Kaya Koc, along with Sam Green. Thank you so much
for your help and guidance this summer. I would also like to thank Daniel Guo.

Finally I would like to thank Dylan Adams for being Dylan Adams.

References

Roshan Dathathri - EVA: An Encrypted Vector Arithmetic Language and
Compiler for Efficient Homomorphic Computation

Zvika Braskerski, Craig Gentry, Vinod Vaikuntanathan - Fully Homomor-
phic Encryption Without Bootstrapping

Jung Hee Cheon, Andrey Kim, Miran Kim, Yongsoo Song - Homomorphic
Encryption for Arithmetic of Approximate Numbers


