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Making accurate predictions of many-body systems is 
paramount to understand the behavior of condensed-matter 
physics, physical chemistry, and material science. The 
complexity of the many-body Hamiltonian points toward 
computational methods as the richest avenue for progress.  

We explore computational progress via two avenues. First, we 
present a self-consistent Hartree-Fock algorithm tested under the 
system of electrons in a box with a randomized nuclei distribution of 
varying number of nuclei and nuclei charge. Second, we develop a 
many-body Finite Element program using N-Dimensional Cubes. We 
map each element to a reference cube of edge length 1 and compute 
the mass and stiffness matrices via the basis of N-D tensor products 
of the set: 

We then take the appropriate symmetric or antisymmetric 
combination in accordance with the bose-einstein statistics of the 
system. 
  Hartree- Fock: Plotted to the right are the electron 

wave functions followed by the electron density and 
nuclei coordinates for a randomized nuclei 
distribution. The plots provide strong indication of the 
success of the self-consistency algorithm, as well as 
some interesting physical results: 

1. Electron wave functions pulled towards positive 
charge with respect to their unperturbed free 
particle analogs.  

2. Wave-functions with higher expected kinetic 
energy are displaced less so than those with less 
kinetic energy. 

3. Wave-functions reach their maximum towards 
the edges of the box. 

4. Increasing nuclei charge and the number of 
nuclei raises the minimum expected kinetic 
energy of the electrons.  

N-D Finite Elements: Plotted towards the bottom 
right are the first three solutions of the free 
Hamiltonian for fermions, demonstrating the 
antisymmetric capabilities of the finite elements. We 
display the wave functions for 2 electrons in 1 
physical dimension for visualization purposes, 
although the program handles any N electrons.  

Currently, the dimension of physical space for the N-
D finite element program is constrained to 1-D by the 
dimension of the edge of our N-D cubes. Our current 
outlook is to generalize the concept of a cube’s edge 
to a higher dimensional space and/or data structure.  
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