Continuous Causal Structural Learning

without Acyclic Constraint
Prince Zizhuang Wang, William Yang Wang

University of California, Santa Barbara
{zizhuang_wang, william}@cs.ucsb.edu

Contributions

Introduction

Learning the causal structure from samples of
a joint distribution 1s a challenging problem,
since the search space of the underlying Directed
Acyclic Graphs (DAGs) 1s combinatorial. Some
recent formulations turn this problem into a con-
tinuous optimization with a structural constraint
enforcing acyclicity. We propose a novel formu-
lation that ensures the learned graphs are acyclic
without adding the acyclicity constraint and there-
fore turn the constrained optimization problem
into an unconstrained one. We compare our ap-
proach to existing continuous optimization meth-
ods on real and synthetic data, and demonstrate
that our method learns appropriate DAGs more
clficiently thanks to the relaxation of the acyclic
constraint.(3) Can generate diverse sequences of
lexts.

Problem Setup

This section reviews the recently proposed gradient-based
method for causal structure learning and 1ts variants.

The NOTEARS 1s the first one to propose a continuous op-
timization approach for learning the DAG structure of a
linear structural equation model (SEM). Let A € RY*9 be
a weighted adjacency matrix of a directed acyclic graph
(DAG) G, the linear SEM entailed by G reads,

X=-A'"X+Z

where Z € R? is the noise variable. The adjacency matrix
A encodes the causal structure of the graph, in which the
indices of non-zero elements in a column A; correspond (o
the parents of node x; in the causal graph.

The scored based method in NOTEARS solves the following
constrained optimization problem to learn A,
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Approach

In this section, we propose a simple and elegant approach to
learn the causal DAG [rom observational data without using
NOTEARS’ setting.

Given an arbitrary DAG G, it is widely known that there
exists an ordering 7 such that w(z) < w(7) if and only if

x; 18 the parent or ancestor of x; in the graph. Let X

be the ordered set of variables, then 1t 1s obvious that the
graph adjacency matrix A of the structural equation X, =
A" X, + Z is an upper triangular matrix. In this case, any
upper triangular matrix A is guaranteed to be acyclic.

. We propose to solve the following optimization problem
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. A is an upper-triangular matrix.
. A’ = PAT A P would automatically be acyclic if the optimal

solution is found

. However, permutation P is a discrete variable. We need to

find a way to parameterize P using a continuous variable

How to parameterize the permutation P

Definition 1. A set of permutations P is a class of bijective
mappings of a set onto itself, in which every element is a
binary matrix P € {0, 1}%*? where both rows and columns
sum to one.

Pa:={P e {0,1}: Ply =141, P =1, }

Definition 2 (Birkholl Polytope: Doubly Stochastic Matrix).
Birkhoff Polytope is a set of Doubly Stochastic (DS) matrices
defined as a set of non-negative matrices whose rows and
clumns sums to one,

d d
DPy:={X e RY: ) Xy =) Xy =1}
1=1 71=1

. Birkhoff Polytope can be viewed as a continuous

relaxation of permutation
. Permutation is the intersection of Birkhoff Polytope and

Orthogonal Matrices
. We can parameterize P as Birkhoff Polytope, and then

enforce orthogonality during training
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